
IEICE TRANS. COMMUN., VOL.E88–B, NO.1 JANUARY 2005
239

PAPER

A Small and Fast IP Forwarding Table Using Hashing∗

Yeim-Kuan CHANG†a), Nonmember

SUMMARY Building next generation routers with the capability of for-
warding multiple millions of packets per second is required for the increas-
ing demand for high bandwidth on the Internet. Reducing the required
memory size of the forwarding table is a possible solution since small for-
warding table can be integrated into the application specific integrated cir-
cuit (ASIC). In this paper a hash technique is developed to reduce the size
of the IP forwarding table. The proposed data structure is a compressed
8-8-8-8 multibit trie that is based on hash tables of 4-bit addresses. Two
optimization techniques are also proposed to further improve the perfor-
mance of the proposed schemes. Our experimental results show that the
proposed hashing-based schemes are better than the Small Forwarding Ta-
ble scheme [6] both in memory size and lookup latency.
key words: hash table, IP lookup, binary trie

1. Introduction

The exponential traffic rate due to the advent of World Wide
Web (WWW) demands for high bandwidth on the Internet
[4]. Backbone routers with gigabit links such as OC-192 at
10 Gb/s and OC-768 at 40 Gb/s are common. Among all the
tasks performed by the routers, the IP lookup is the most
critical one that must be able to keep up with the link speed
and router bandwidth. These backbone routers have to for-
ward millions of packets per second at each port.

The IP lookup problem becomes a longest prefix
matching (LPM) problem because of there may be more
than one prefix that matches the target IP address. The bi-
nary trie is the basic data structure used in most of IP lookup
algorithms. Based upon this primitive trie structure, a set of
prefix compression and transformation techniques are devel-
oped. The path compression technique [7], [12] improves
time and space performance by removing the nodes that
have only one child [2]. The prefix expansion, one of the
most common transformation techniques allows us to trans-
form one prefix into many longer or more specific prefixes
that cover the same range of addresses. One way to use
the prefix expansion technique is to remove the enclosure
property and thus make a set of prefixes disjoint, or non-
overlapping. Enclosure property means one prefix covers
the addresses of another prefix. Making prefixes disjoint
can remove many complex tasks when performing lookup

Manuscript received May 21, 2004.
†The author is with the Department of Computer Science

and Information Engineering, National Cheng Kung University,
Tainan, Taiwan, Republic of China.

a) E-mail: ykchang@mail.ncku.edu.tw
∗This work was supported in part by the National Science

Council, Republic of China, under Grant NSC-93-2213-E-006-
085.

operations. Another way to use the prefix expansion tech-
nique is to transform a binary trie into a k-bit trie, where k
is called the stride. A k-bit trie can speedup the search per-
formance by inspecting not just one bit but k bits at a time
in an IP lookup operation. The stride size can be varied in
any trie nodes at different levels. Therefore, if all nodes at
the same level have the same stride size, we say that it is a
fixed stride; otherwise, it is a variable stride.

Various techniques were developed to improve the per-
formance of the multibit trie data structure [5], [10], [11].
The basic hardware based scheme proposed by Gupta et
al. [8] uses a two-level multibit trie with fixed strides. The
small forwarding table (SFT) scheme [6] was proposed
to reduce space consumption. Nilsson et al. [5] proposed
a scheme called Level-compressed (LC) that recursively
transforms binary tries with prefixes into multibit tries. A
large variety of routing lookup algorithms can be found in
the survey paper by Ruiz-Sanchez et al., where the worst-
case complexities of most IP lookup schemes in lookup la-
tency, update time, and storage usage are compared [1].

In this paper, we shall propose a new method that em-
ploys a novel hashing technique to avoid wasting the unused
space in the multibit trie. For 4-bit subtries, a near-minimal
hash function can be constructed. The 4-bit hashing tables
are used as the building blocks to build the whole routing
table recursively. We will show that the size of the proposed
routing table is the smallest among all the existing schemes.

The rest of the paper is organized as follows. We sum-
marize the existing IP lookup schemes related to the pro-
posed data structure in section 2. We also conduct perfor-
mance simulations to demonstrate their performance differ-
ences. In Section 3, the basic idea of the proposed hash table
of 4-bit addresses is first illustrated. Then an 8-8-8-8 hier-
archical routing table is proposed. Two optimization tech-
niques are also developed to further reduce the size of the
proposed 8-8-8-8 data structure. Performance comparisons
using real routing tables are presented in Section 4. Finally,
a concluding remark is given in the last section.

2. Related IP Lookups and Their Performance

In this section,we shall perform computer simulations to
obtain the memory sizes and lookup times for the related
lookup schemes that are closely related to the designs for
minimizing the memory consumption of the routing tables.
For completeness, the basic binary trie, BSD trie, and the bi-
nary search on ranges are also included in the performance

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers

240
IEICE TRANS. COMMUN., VOL.E88–B, NO.1 JANUARY 2005

comparisons.
The data structures designed to minimize the amount

of memory required for the routing tables are mostly based
on the run-length encoding and the technique that uses local
indices of pre-allocated arrays. Basically, in the run-length
encoding, an array of keys (possibly repeated) is encoded by
a bitmap and an array of non-repeated keys. The index of a
bit position in the bitmap represents the index of the corre-
sponding key in the original array. The number of one’s in
the bitmap is equal to the size of the array of non-repeated
keys. Thus, the operation of searching for a key in the ith
position of the original array now becomes a 2-step process.
The first step is to count the number of one’s (say n) ahead
of ith position of the bitmap, including the ith position. The
second step is to locate the nth position of the array of non-
repeated keys. Two existing schemes using the run-length
encoding are the small forwarding table [6] and the com-
pressed 16-x scheme [2].
Performance Evaluation:

Instead of comparing the theoretical performance com-
plexities [2], [6], [13], [14], trace-driven simulations are
conducted to show the performance of the existing schemes.
We measure the amount of memory required for building
the routing tables and the lookup latencies. To demonstrate
the performance differences between the existing schemes,
the experiments are conducted on a large routing table (Oix-
120k) containing 120,635 routing entries obtained from [9].

Since it is almost impossible to obtain the actual IP
traffic being routed through the router at the time when the
routing table trace is logged, we simulated the IP traffic by
taking the IP’s from the original prefixes and randomizing
them. The same method was also used in [1] and [5].

The experiments for measuring lookup times are con-
ducted on the Intel Pentium platform with a 2.4G Pentium
IV processor and 8 KB L1 and 256 KB L2 caches. To have
a fair comparison, all the schemes employ a 16-bit segmen-
tation table similar to the 16-16 scheme. The clock cycles
are measured by using the special instruction, rdtsc (read
time stamp counter), provided by Intel Pentium processor.
We assume each entry in the 16-bit segmentation table is of
4 bytes. Therefore, the 16-bit segmentation table consumes
256 kbytes. Notice that the source codes for the LC trie are
obtained from the web site provided by the original authors
[5]. In the experiments for the LC trie, we use the default
branch factor at the root node which is 16. This means the
default LC trie also has a 16-bit front-end segmentation ta-
ble. The fill factor is set to 0.5. Since we do not have a
chance to get the source codes from the original authors of
the other existing schemes, we implement them using the C
programming language. All the programs are compiled by
gcc compiler and optimized by the O4 option.

In Table 1, the detailed statistics are included in order
to illustrate the subtle differences between these schemes.
The assumptions about memory sizes of the basic data units
used in the corresponding schemes are also included in the
parentheses. The original table shown in the last row of Ta-
ble 1 contains 120,635 prefixes. The size of the memory

Table 1 Memory required for table Oix-120k.

Scheme Segmentation Statistics Memory size

Binary trie # of nodes: 320,478 (7 byte each) 2,447 KB
BSD trie 16-bit # of nodes: 222,334 (8 byte each) 1,993 KB

Binary range segmentation # of prefixes: 112,286 (4 byte each) 1,104 KB
Multiway range table # of blocks: 71,034 (64 byte each) 4,695 KB

65535 entries Base array: 427 KB
Compressed (4 byte each) Compressed Bit-map: 427 KB 1,147 KB

16-x CNHA: 37.9 KB

of nodes: 259,371 (4 byte each)
LC trie Branch factor:16 Base Vector: 110,679 (16 byte each) 2,859 KB

Fill factor:0.5 Prefix Vector: 9,927 (12 byte each)
Next Hop Vector:255 (4 byte each)

of segments (avg # of prefixes
of per segment)

level-1 pointers: Sparse:2,765(2.9)
SFT 13,317 Dense:4,300(25.5) 649.9 KB

of Very dense:586(91.7)
level-2 pointers: Maptable: 5.3K

461 Binary array: 2K
(4 bytes each) Code Word array: 8K

Original table N/A # of prefixes: 120,635(45 bits each) 662.7 KB

Table 2 Average IP lookup times for table Oix-120k.

of 10th 50th 90th AverageAverage
memory percentilepercentilepercentile lookup lookup

Scheme access time time
(min/max) (cycles) (cycles) (cycles) (cycles) (µs)

Binary trie 8/32 432 1065 1548 1140 0.470
BSD trie 8/26 490 1006 1452 1077 0.444

Binary range 1/6 264 680 1022 648 0.267
Multiway range 1/4 226 541 861 568 0.234

Compressed 16-x 1/3 230 434 830 409 0.169
LC trie 1/5 455 777 1070 757 0.312

SFT 1/12 378 657 892 503 0.207

required for the original routing table is computed based on
the length format with a 32-bit address, a 5-bit length, and
an 8-bit port. Therefore, the amount of memory required for
the original table is 662.7 kbytes. The lookup time variabil-
ity for the seven different schemes is summarized in Table 2
by showing the results of the 10th percentile, 50th percentile
(median), 90th percentile, and the average.

The multiway search on range scheme [3] needs the
largest amount of memory because pointer overhead in each
block is high and many blocks are partially filled with pre-
fixes. However, since the multiway search on range scheme
takes the advantage of L1 cache lines, its lookup latency
performs very well. The amount of memory required for
the binary trie, BSD trie, and LC trie is only better than the
multiway search on range scheme. The fill factor of 0.5 is
the main reason why the LC trie consumes more memory
space than expected. As most people expected, the BSD trie
needs less amount of memory than the binary trie. The dif-
ference in lookup latency between the binary trie and BSD
trie is not significant. The lookup latencies of the binary
trie and the BSD trie are worse than other schemes. Since
it is too complicated to show the statistics of levels 2 and 3
for SFT separately, all the information of levels 2 and 3 are
combined. For example, there are 2,765 sparse segments in
level 2 and level 3 that contain no more than eight prefixes.
Based on the proposed formats in SFT, a sparse, a dense,
and a very dense segment containing k prefixes need 24, 34
+ 2k, and 40 + 2k bytes, respectively. The SFT scheme

YKChang
螢光標示

CHANG: A SMALL AND FAST IP FORWARDING TABLE USING HASHING
241

Table 3 Routing tables considered in the paper.

Funet-40k Oix-80k Oix-120k Oix-150k
of prefixes 41,709 89,088 120,635 151,511

Length distribution 8-30-32 6-32 8-32 8-32
Date 1997-10-30 2003-12-28 2002-12-01 2004-2-1

needs 649.9 kbytes of memory that is the smallest among all
the existing schemes. The lookup latency of the SFT scheme
also performs very well.

The compressed 16-x scheme performs better than SFT
in term of lookup latency. However, the compressed 16-x
scheme needs more than one Mbytes of memory. To have a
complete understanding of the amount of memory required
for the compressed 16-x scheme, we also conduct experi-
ments for tables of various sizes. Table 3 shows the general
information of the routing tables considered. We observe
that the size of required memory is not proportional to the
number of the prefixes in the original table. The amount of
memory required for Oix-80k is 1838 kbytes which is even
larger than that for Oix-120k. For Oix-150k, 3,182 kbytes of
memory are needed. This disproportion in the amount of re-
quired memory is mainly caused by the number of segments
that contain prefixes of lengths longer than 24. As a spe-
cial case, it can be easily computed that a segment contain-
ing at least one prefix of length 32 needs 16 kbytes for the
base array and the bitmap. Based on our simulation results,
Oix-80k and Oix-120k tables have 64 and 18 segments that
have at least one prefix of length 32, respectively. Therefore,
Oix-80k consumes more memory than Oix-120k. In short,
the more prefixes of lengths 25 to 32 exists in a routing ta-
ble, the larger the memory is required for the compressed
16-x scheme. Based on this observation, it is hard to predict
the amount of memory required for the compressed 16-x
scheme without knowing the length distribution of the rout-
ing table.

Besides the compressed 16-x scheme, it seems that
SFT is the best approach that a router can adopt because
it has a very good performance both in memory size and
lookup latency. However, its update can not be done without
re-building entire data structure for the first 16 levels of the
trie. The entire data structure for the first 16 levels is re-built
when a prefix is inserted into one of the unused segment or
all the prefixes in a segment are deleted. The re-building
process that modifies code word array, base index array, and
level-1 pointer array is very time-consuming. Since all the
existing schemes, except SFT, use a 16-bit segmentation ta-
ble, the update process is limited to a single segment if in-
serted or deleted prefix is longer than 16 bits. On the other
hand, a number of fixed positions in the segmentation ta-
ble need to be updated if the inserted or deleted prefixes are
shorter than 16. Therefore, it is still desirable to have a new
lookup scheme that has a better performance in memory and
lookup time than SFT and allows a similar incremental up-
date to the schemes with a 16-bit segmentation table.

3. The Proposed Scheme

In this section, a hashing technique is developed to remove
the unused pointers in a multibit trie. Based on this hash-
ing technique for 4-bit addresses, we will propose an 8-8-8-
8 hierarchical data structure and show by experiments that
the proposed schemes in terms of memory consumption and
lookup latency perform very well compared with the exist-
ing schemes.

3.1 Hash Function

Assume that there is a set of m keys, S = {k0, . . . , km−1};
each key is an n-bit binary number. We like to find a map-
ping called the perfect hash function such that each key
is mapped into a unique number in the range from 0 to
H S ize − 1, where H S ize is the size of the hash table. If
m = H S ize, this perfect hash function is minimal. Finding
a perfect hash function is easy if we can support a memory
array of size 2n elements. The hashed number of a key is
equal to the value of the key. However, there will be 2n -
m unused elements. When 2n is much greater than m, it is
a large waste of memory space. Finding a minimal perfect
hash function is difficult. We propose a mechanism that al-
lows us to find a near-minimal perfect hash function. The
proposed hash function, H, for an n-bit number (bn−1 . . . b0)
is formulated as follows.

H(bn−1 . . . b0) =
i=n−1∑

i=0

∣∣∣Vbi [i]
∣∣∣

The absolute value of x is denoted as |x|. V0 and V1

are two pre-computed arrays of size n. At least one of the
elements V0[i] and V1[i] is zero and the other is in the range
from −2n−1 + 1 to 2n−1.

Consider a list of eight 4-bit numbers shown in Fig-
ure 1. We have V0 = [0,0,0,0] and V1 = [4,3,1,1]. Eight slots
in the 4-bit trie array are unused. The trie using hash table
is shown in Figure 1(c). The index for each prefix can be
computed by using the pre-computed hash table. The con-
struction algorithm for arrays V0 and V1 is based on a form
of exhaustive search. Briefly, for each one out of 2n cells in
V0 and V1, a number in the range from −2n−1 + 1 to 2n−1 is
tried one at a time until the hashed values of all the keys are
unique. The construction algorithm involves three steps that
are described as follows.

Step 1: sort the keys based on the frequencies of the
occurrences of 0’s or 1’s starting from dimension 0 to n − 1.
If the number of 1’s is the same as that of 0’s the order of
the keys keeps unchanged. Now assume the keys are in the
order of k0, . . . , km−1 after sorting. In the next two steps the
keys are processed in this order.

Step 2: compute the cells in arrays V0 and V1 that the
current key controls. The key, bn−1 . . . b0, has the control on
Vbi[i] if Vbi[i] is not yet controlled by one of the preceding
keys for i = n − 1 to 0. For example, assume the first two

242
IEICE TRANS. COMMUN., VOL.E88–B, NO.1 JANUARY 2005

Fig. 1 The binary trie, 4-bit trie, and 4-bit hash table.

keys in a 4-bit address space are 0000 and 0011. The first
key control V0[3], V0[2], V0[1], V0[0]. However, the second
key only controls V1[1] and V1[0] because V0[3] and V0[2]
are already controlled by the first key.

Step 3: use the following rules to assign a number in
the range from −2n−1 + 1 to 2n−1 to each cell controlled by
the current key. If the hashed value, H(bn−1 . . . b0), of the
current key is already taken by its preceding keys or larger
than H S ize − 1, all the cells controlled by the current key
must be re-assigned new numbers. If no number can be used
after exhausting all the possible cells controlled by the cur-
rent key, we will backtrack to the previous key and set it to
be the current key again. We then re-assign the cells con-
trolled by the new current key different numbers and con-
tinue the same procedure. If the hashed value of the current
key is in the range from 0 to H S ize − 1 and is not taken by
its preceding keys, the next key will be tried and the same
procedure goes on.

Example 1: We use the eight 4-bit keys in Figure 1 to
demonstrate how the hash table is constructed. The numbers
of 0’s are the same as that of 1’s at the bit positions of 0, 1,
and 2. The order of the keys depends only on bit 3 and thus
is in the order of 0000, 0001, 0011, 0100, 0110, 0111, 1011,
and 1100. The construction of the hash table starts with the
key 0000 which controls V0[3], V0[2], V0[1], V0[0] and we
have V0[3]=0, V0[2]=0, V0[1]=0, and V0[0]=0. Next we
consider key 0001 which controls only V1[0]. To make cur-
rent hash table minimal, V1[0] is set to 1. We have H(0000)
= 0 and H(0001) = 1. Now, the third key 0011 controls only
V1[1] which is set to 1. Therefore, we have H(0011) = 2.
By doing the same construction process, we have V1[2]=3
because of key 0100 and H(0100)=3. Fortunately, we have
H(0110)=4 and H(0111)=5. Finally, we set V1[3]=4 and
have H(1011)=6 and H(1100)=7.
Analysis of the 4-bit hash table:

Since building an n-bit hash table uses an exhaustive
search, it is not feasible for a large n. In this paper, we
select the hash table of size n = 4 as the building block for
creating large routing tables. We use the exhaustive search
to check whether finding a minimal perfect hash function is
possible for a set of N 4-bit numbers, where N = 1 to 16.
We find out that the minimal perfect hash function exists for
all cases except some rare cases when N = 10 or 11. The

Fig. 2 Hash tables of 4-bit addresses.

perfect hash function with the minimal hash size increased
by one exists for these rare cases. Figure 2 illustrates one
of these rare cases whose minimal perfect hash functions do
not exist. The perfect hash function of size 11 is shown for
a list of 10 numbers. The hashed values are shown in the
parentheses. Value nine is the only unused hashed value for
these 10 keys.
Additional data structure:

In order to make the proposed hash technique work for
the routing table lookup, two additional data are needed.
One is the total count of the hashed keys and the other is
the hashed key itself. Consider again the hash table consist-
ing of eight keys in Figure 1. We have illustrated how to
search for the keys that are in the hash table. However, for
the keys that are not in the hash table, we need a mechanism
to avoid fault hits. For example, the hashed value of key
1111 is nine which exceeds the capacity of the hash table.
Therefore, the total count of the hashed keys can be used to
handle this case. To be more specific, if the hashed value of
a key exceeds the total number of the keys minus one, the
key must not be in the hash table. Consider another case
where the incoming key is 0010. The hashed value is one
which is the same as that of key 0001. Therefore, to avoid
an incorrect result, the key itself, 0001, must also be stored
along with other routing information. In other words, even
the hashed value does not exceed the capacity of the hash ta-
ble we still need to check if the key matches the value stored
in the corresponding cell of the hash table.

3.2 The Proposed Data Structure

The proposed data structure for the routing table uses 4-bit
hash tables as the building blocks. It is organized as a 4-
level 8-8-8-8 hierarchy and is shown in Figure 3. Instead
of a 16-bit front-end segmentation table, we use an 8-bit
pointer table as the front-end lookup array to avoid wasting
too much memory. The reason why we do not use hashing
for this front-end array is that we trade a little more space for
smaller access latency. Since this front-end 8-bit table is the
only first-level table, the memory wasted for unused slots is
small and thus acceptable. Each element of the 8-bit pointer
table stores either a 20-bit pointer pointing to the hash table
of the second level subtrie or a port number if only prefix of
length 8 exists.

The hash table of the second level subtrie uses a data
structure called format H block. Each format H block con-
sists of a 4-bit hash table that recursively hashes at most 16

YKChang
螢光標示

YKChang
螢光標示

YKCHANG
文字方塊
4 個 4-bit cells and a 4-bit mask to record V0i or V1i is zero.So, total 20 bits for hash table in the form of (b3b2b1b0,V[3],V[2],V[1],V[0])

CHANG: A SMALL AND FAST IP FORWARDING TABLE USING HASHING
243

Fig. 3 Data structure for the proposed 8-8-8-8 table.

4-bit hash tables. The first part of format H block is called
the format G1 sub-block that consists of a 1-bit format se-
lector for the level-16 pointer table (described later), a 20-bit
global pointer pointing to the level-16 pointer table, an 8-bit
default port number, a 4-bit count to record the total num-
ber of next-level hash tables and a 20-bit hash table. The
20-bit hash table records V0[3. . . 0] and V1[3. . . 0]. Based
on the proposed hashing technique, at least one of V0[i] or
V1[i] must be zero, for i = 3 . . . 0. Therefore, one bit is suf-
ficient to record whether V0[i] or V1[i] is zero and four bits
are needed to store the other value. In summary, the 20-bit
hash table consists of a 4-bit number called bit-array that
records whether V0[i] or V1[i] is zero and four 4-bit num-
bers called V array that record the other four values of V0[i]
and V1[i] that may be zero or non-zero. The 20-bit hash ta-
ble (bit array, V array) is represented in the numerical form
of (b3b2b1b0,V[3],V[2],V[1],V[0]). The second part of the
format H block is an array of format G2 sub-blocks. Each
format G2 sub-block consists of a 4-bit prefix string, a port
number or an 8-bit local index to the level-16 pointer array,
a 4-bit count to record the number of keys in the correspond-
ing sub-hash table, and a 20-bit sub-hash table. Notice that
when the trie stops at prefix length 12, a port number instead
of local index to the pointer array is recorded. Also the fields
for key count and sub-hash table are set to zero.

The data structure in level 24 is the same as that in
level-16. The level-16 and level-24 pointer tables are arrays
of either format P1 pointers consisting of 4-bit prefixes and
20-bit pointers or format P2 pointers consisting of 8-bit port
numbers if no subtrie exists beneath this level. The 1-bit for-
mat selector in G1 sub-block is used to determine whether
format P1 or P2 is used. We use a different data structure in
level 32 since most routing entries have their lengths shorter
than or equal to 24. The level-32 structure is organized as
an array of 256 port numbers.
Build and update:

The proposed 8-8-8-8 routing table is similar to the
4-bit trie except the some internal nodes in each 4-bit trie
are replaced by the recursive hash tables of 4-bit addresses.
We propose to first build the 4-bit trie and then compute the

corresponding hash tables and the associated pointer tables.
When a prefix is deleted from or added in the routing table,
the 4-bit trie is then updated and thus the corresponding part
of the proposed 8-8-8-8 routing table can be changed ac-
cordingly. In order to avoid the worst-case computation time
for some combination of 4-bit numbers, we pre-compute all
the 64K (216) possible 4-bit hash tables which account for
160 kbytes since each 4-bit hash table needs 20 bits. No-
tice that the number of distinct hash tables is much less than
64K which will be shown in the sub-section of optimization.
Now computing a 4-bit hash table becomes one memory ref-
erence to the corresponding 20 bits in the array of 64K en-
tries. Thus, the updating process for deleting or inserting
a prefix in the proposed 8-8-8-8 data structure is as fast as
that of updating a 4-bit trie plus accessing at most four ad-
ditional pre-computed 4-bit hash tables and rearranging the
corresponding pointers.
IP lookup:

The IP lookup process based on the proposed 8-8-8-8
hierarchical structure is simple and is described as follows.
The level-8 pointer table is first referenced by using the most
significant 8 bits (bits 31 to 24) of the IP address. Then the
next 8 bits (bits 23 to 16) of the IP address and the level-16
hash tables are used to compute the index of level-16 pointer
table. The hashed value is first computed with bits 23 to 20
of the IP address and the 20-bit hash table in the format G1
sub-block of the level-16 hash table. If the hashed value
is larger than the 4-bit count of the format G1 sub-block
then the 8-bit port number of the format G1 sub-block is
returned. Otherwise, the hashed value is used as the index
for reference the corresponding format G2 sub-block. The
4-bit prefix of the corresponding G2 sub-block is matched
against bits 24 to 20 of the IP address. If match is not found
the default port number of the format G1 sub-block is again
returned. If match is found and the key count field is zero,
then the port number in the G2 sub-lock is returned. Other-
wise, bits 19 to 16 of the IP address, the 4-bit count and, the
20-bit hash table of the corresponding format G2 sub-block
are used to check if there is a matched element in the level-
16 pointer array. The format selector in the G1 sub-block

YKChang
螢光標示

YKChang
螢光標示

YKChang
螢光標示

YKChang
螢光標示

YKChang
螢光標示

YKChang
螢光標示

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

YKChang
鉛筆

ykchang
線段

ykchang
線段

ykchang
線段

ykchang
線段

ykchang
線段

ykchang
線段

244
IEICE TRANS. COMMUN., VOL.E88–B, NO.1 JANUARY 2005

determines whether format P1 or P2 pointer table is used. If
a matched element in level-16 pointer array is not found the
default port number in G1 sub-block is returned. Otherwise,
the same process is performed for level-24 hash table and
pointer table.

After reaching the level-24 pointer array, the last 8 bits
of the IP address is used to reference the bottom port table, if
needed. The worst-case number of the memory references
for a lookup is from 1 to 8. Two memory references are
needed when accessing the level-16 or level-24 hash tables.
In other words, at most four 4-bit hash tables are checked.

3.3 Optimizations

Two optimization techniques are developed to further im-
prove the performance of the proposed scheme. The first
technique called level-compression (LC) approach is de-
signed to reduce the number of memory references. The
second technique called maptable approach is designed to
further reduce the memory consumption.

The level-compression approach is developed because
of the following observation. There is only one format G1
sub-block in each level-16 hash table. Therefore, the front-
end level-8 pointer table can be combined with the format
G1 sub-blocks. Similarly, the level-16 pointer table can be
combined with the format G1 sub-blocks of the level-24
hash tables. Additionally, the level-24 pointer table can be
combined with level-32 port table. The wasted memory is
small because only a few prefixes are of length longer than
24. With the LC optimization, the total number of memory
accesses for an IP lookup operation becomes 1 to 5.

In order to further reduce the memory usage, the sec-
ond optimization technique called the maptable approach
uses an approach similar to the maptable of SFT [6]. Before
we describe the detailed design, we shall first illustrate our
idea by considering the example in Figure 1. The hash table
of the eight keys is represented numerically in Figure 4(a)
as (1111,4,3,1,1). This hash table is not only applicable to
the list with the eight keys shown in Figure 1, but also ap-
plicable to the other lists with various numbers of keys. For
example, the hash table (1111,4,3,1,1) can also be applied
to the list with 0, 2, 3, 4, and 8, the list with 0, 2, 3, 4,
5, 10, 11, 12, 14, and 15, and so on. The complete list of
hashed values and the corresponding keys are illustrated in
Figure 4(b). In general, finding the list of keys that can be
applied to the hash table is easy. We first select a list of

Fig. 4 Illustrations of lists containing various numbers of keys hashed to
a 4-bit hash table.

consecutive non-duplicated hashed values starting from 0 to
cnt− 1, where cnt is the number of the keys in the list. Then
the corresponding keys to the selected hashed values form
the list of keys that is applied to the hash table. If the ca-
pacity of the hash table that is allowed to be more than the
number of the keys, the number of the applicable lists may
be even larger. The following example shows that the hash
table that is minimal and prefect for a list of 11 keys can also
be applied to another list containing 10 keys.

Example 2: The minimal perfect hash table of keys, 0,
1, 2, 4, 5, 6, 8, 11, 12, 13, and 15 is (0011,8,2,-4,-1). By
an exhaustive search, we have not found a minimal prefect
hash table for the list of keys 0, 1, 2, 4, 5, 6, 8, 11, 12, and
15. If we allow the hash size to be one more than the number
of keys, the hash table (0011,8,2,-4,-1) can be reused for the
latter list.

It is obvious that there are 216 combinations of zero to
sixteen 4-bit numbers. We used an exhaustive search to find
all the distinct V-array’s that are applicable to all 216 combi-
nations of 4-bit numbers. We found out that there are only
217 distinct V array’s. Notice that we do not further reduce
the number of V array’s although it is possible. Therefore,
V array can be replaced by an 8-bit number that is the index
to the array of pre-computed 217 V array’s. The bit-array
remains the same. This technique reduces the size of a 20-
bit hash table from 20 to 12 bits with only a small overhead
of 217×16 bits = 434 bytes used for the pre-computed array
of 217 V array’s.

Although computing the hashed value by using the pre-
computed hash table and the corresponding 4-bit IP address
is simple, we propose another enhanced technique to avoid
the computations for hashed values. There are sixteen pos-
sible values for 4 bits. Therefore, we can pre-compute the
hashed values of a hash table. This approach allows us to
only record sixteen 4-bit hash values instead of the V array
itself. In other words, we create a 2-dimensional array called
maptable in which the first dimension is of size 217 and the
second dimension is of size 16. Each element of maptable
is 4 bits because the hashed value is in the range of 0 to 15.
Assuming the recorded 8-bit V array index in the format
G1/G2 sub-block is i and the 4-bit address is A = a3a2a1a0,
the lookup process becomes a two-step process. Assume
the current 4-bit bit-array is B = b3b2b1b0. The first step
requires the exclusive-or (XOR) operation on A and B. As-
sume A XOR B = C. Then, the second step is a search for
the Cth element of the ith row in maptable. The 2-D mapt-

Table 4 The number of memory accesses for Oix-120k.

Lookup schemes # of Memory accesses (min/max)

SFT 2/12
Original 8-8-8-8 1/4
Proposed 8-8-8-8 1/8
Proposed 8-8-8-8

with LC 1/5
Proposed 8-8-8-8

with maptable 1/12
Proposed 8-8-8-8

with LC and maptable 1/9

YKChang
鉛筆

CHANG: A SMALL AND FAST IP FORWARDING TABLE USING HASHING
245

able is of size 217 × 16 × 4 bits = 1736 bytes.
By using the maptable optimization, the total number

of memory accesses for a lookup becomes 1 to 12. This is
because obtaining a hashed valued takes one memory access
to the maptable and there are at most four hashed values to
complete a lookup. The proposed 8-8-8-8 scheme can be op-
timized by the two techniques simultaneously, which results
in 1 to 9 memory accesses. We summarize the maximum
and minimum numbers of memory accesses that a lookup
operation takes for the proposed 8-8-8-8 schemes in Table 4,
along with the results for the SFT scheme.

4. Performance Evaluation

In this section, we use the same simulation setup in section 2
to evaluate the performance of the proposed schemes in term
of amounts of memory and lookup latencies required for the
proposed schemes. As demonstrated by the previous perfor-
mance results, the SFT scheme is in general better than other
existing lookup schemes. Therefore, only the SFT scheme
is compared with the proposed schemes in this section.

We first show the memory sizes required for the routing
tables in Table 5. The sizes of the routing tables for all the
proposed 8-8-8-8 schemes are smaller than SFT. We believe
that maptable will reside in the L1 cache most of time since
maptable array is only less than 2 kbytes. Therefore, the
average lookup latency will perform much better than what
the worst-case number of memory references indicates.

Figure 5 shows the distribution of lookup latencies us-
ing oix-120k routing table. The lookup latencies for the pro-
posed scheme with only LC optimization and that with both

Table 5 Memory required for the proposed schemes.

Routing table (kbytes) Funet-40k Oix-80k Oix-120k Oix-150k
SFT 274.5 538.2 649.9 800.6

Proposed 8-8-8-8 174.7 415.9 533.5 707.1
Proposed 8-8-8-8

with LC 195.4 441.5 572.8 726.3
Proposed 8-8-8-8

with maptable 164.2 392.1 503.4 666.9
Proposed 8-8-8-8

with LC and maptable 184.7 417.7 541.7 688.2

Fig. 5 IP lookup latency for table Oix-120k.

LC and maptable are shown. We do not show the results for
the scheme with only maptable optimization and that with-
out any optimization because they have no significant differ-
ence compared with the two results shown in Figure 5. We
can see that the proposed schemes perform better than SFT.
The performance of the proposed scheme with both LC and
maptable is only a little better than the scheme with only LC
optimization. The highest peak of the proposed schemes is
from the accesses to the prefixes of length 24 because the ac-
cesses to prefixes of length 24 account for more than 60total
accesses. The leftmost and rightmost peaks of the proposed
schemes are for the accesses to the prefixes of length less
than and larger than 24, respectively. The performance of
the SFT scheme is the worst. Although the curve of the SFT
scheme also has three prominent peaks, it has a different
characteristic from the proposed schemes. The differences
are described as follows. Since all the prefixes of length
less than 16 are extended to length 16, the leftmost peak is
mainly caused by the accesses to the prefixes of length equal
to 16. The other two peaks are caused by the accesses to the
prefixes of length 24. Theses two peaks correspond to the
two different access patterns for the sparse chunks and non-
sparse chunks (dense and very dense chunks).

We also obtain the performance curves for the routing
table Oix-150k, Oix-80k, and Funet-40k. Their curves have
similar shapes to that of Oix-120k. Therefore, we only show
the lookup time distribution for funet-40k table in Figure 6.
The performance of the proposed schemes in lookup latency
is better than SFT for all the tables of various sizes.

Table 6 summarizes the average lookup times for these
four tables. We can see that there is no big difference in the
average lookup latencies among all the three schemes for
the smallest funet-40k table. However, the average lookup
times of the proposed schemes become better than SFT for

Fig. 6 IP lookup latency for table Funet-40k.

Table 6 Average lookup latencies in clock cycles.

Routing table Funet-40k Oix-80k Oix-120k Oix-150k
SFT 292 452 507 546

Proposed 8-8-8-8
with LC 300 350 401 423

Proposed 8-8-8-8
with LC and maptable 286 348 392 411

246
IEICE TRANS. COMMUN., VOL.E88–B, NO.1 JANUARY 2005

larger tables.

5. Conclusions

In this paper, we conducted trace-driven simulations to eval-
uate the existing lookup schemes designed for routing table
reduction. We found out that the compressed 16-x scheme
is the fastest one and the SFT scheme is the smallest one.
To further reduce the table size, we introduced a new hash-
ing technique that can compact the routing table and pro-
duce a smaller data structure than SFT. Hash tables of 4-bit
addresses are the basic building blocks to construct hash ta-
bles of 8-bit addresses which in turn were used to build the
proposed 8-8-8-8 routing table. The basic hash table is fur-
ther optimized in term of access latency and memory size
by the level compression and maptable techniques. The ex-
periments showed that the proposed data structure is smaller
and faster than the SFT scheme.

References

[1] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, “Survey and
taxonomy of IP address lookup algorithms,” IEEE Netw. Mag.,
vol.15, no.2, pp.8–23, March/April 2001.

[2] N.F. Huang, S.M. Zhao, J.Y. Pan, and C.A. Su, “A fast IP routing
lookup scheme for gigabit switching routers,” Proc. INFOCOM 99,
pp.1429–1436, March 1999.

[3] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using
multiway and multicolumn search,” IEEE/ACM Trans. Netw., vol.3,
no.3, pp.324–334, 1999.

[4] G. Huston, “Analysis of the Internet’s BGP routing table,” Internet
Protocol Journal, vol.4, no.1, pp.2–15, March 2001.

[5] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,”
IEEE J. Sel. Areas Commun., vol.17, no.6, pp.1083–1092, June
1999.

[6] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small for-
warding tables for fast routing lookups,” ACM SIGCOMM, Palais
des Festivals, pp.3–14, Cannes, France, 1997.

[7] K. Sklower, “A tree-based packet routing table for berkeley unix,”
Proc. 1991 Winter Usenix Conf, pp.93–99, 1991.

[8] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” Proc. INFOCOM 99, pp.1240–1247, March
1999.

[9] D. Meyer, “University of oregon route views archive project: Oix-
damp-snapshot-2002-12-01-0000.dat.gz,” http://archive.routeviews.
org/

[10] V. Srinivasan and G. Varghese, “Fast address lookups using con-
trolled prefix expansion,” ACM Trans. Comput. Syst., vol.17, no.1,
pp.1–40, Feb. 1999.

[11] S. Sahni and K.S. Kim, “Efficient construction of multibit tries for IP
lookup,” IEEE/ACM Trans. Netw., vol.11, no.4, pp.650–662, 2003.

[12] D. Morrison, “PATRICIA-Practical algorithm to retreive informa-
tion coded in alfanumeric,” J. ACM, vol.15, no.4, pp.514–534, Oct.
1968.

[13] A. Andersson and S. Nilsson, “Improved behaviour of tries by adap-
tive branching,” Inf. Process. Lett., vol.46, no.6, pp.295–300, 1993.

[14] P. Crescenzi, L. Dardini, and R. Grossi, “IP address lookup made fast
and simple,” 7th Annual Euro. Symp. Algorithms; also, Technical
Report TR-99-01 Univ. di Pisa, 1999.

Yeim-Kuan Chang received the M.Sc.
degree in computer science from University of
Houston at Clear Lake in 1990 and the PhD
degree in computer science from Texas A&M
University, College Station, Texas, in 1995.
Dr. Chang is currently an Assistant Professor
in the Department of Computer Science and In-
formation Engineering at National Cheng Kung
University, Tainan, Taiwan, Republic of China.
His research interests are in the areas of com-
puter architecture, parallel processing, Internet

technology, and computer networking.

